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Abstract

The application of linear regression to data analysis is traditionally a tedious calculation dele-

gated to a computer. This article presents a physical model to facilitate an intuitive way of thinking

about the meaning of a fit, particularly the slope. In this simple model, data points are envisioned

as beads applying torques on a massless rod. As an illustration of how this model can help col-

leagues directly address special questions about fits, the model is applied to a situation in which

repeated measurements of the dependent variable (y-values) are made at each of the independent

variable values (x-values), and vice versa. The question posed was, “Does the slope depend on

whether a linear fit is done with all of the data points or on data where the repeated measure-

ments have been averaged first?” The answer can be calculated mathematically or by a computer;

however, this paper provides a method for intuiting an answer using introductory-level physics. In

addition, the model arrives at the coefficient of correlation formula in a very straightforward way,

and as a final perk, it makes the recollection of the least-squared slope formula and coefficient of

correlation much easier.
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I. INTRODUCTION

When teaching data analysis to students or discussing the subject with colleagues, it is

common to encounter questions about hypothetical data collections and how different fit

procedures would impact the fit of a line. To approach such questions mathematically is

often difficult and time consuming, often starting with the lumbering motion of looking up

the formula for a least-squares fit. This paper presents a physical way of thinking about a

linear least-squares data fit and includes an example of how the model can be useful.

In particular, two methods of fitting a line to “clustered” data will be compared. To illus-

trate the question, consider an example in which several measurements of a wire’s resistance

are made at a particular temperature, and this procedure is replicated for several different

temperatures. A typical way for a scientist to handle such data is to average the points in

each cluster (the resistance measurements taken at each temperature, in this case) and then

make a weighted fit of the averaged data values; call this the “standard” approach. But how

would the slope calculation change if a scientist elects to simply fit a line to all of the data

points without averaging the clusters first? Will the slope of this “full data fit” agree with

the standard approach? The physical model presented in this paper can shed some light on

this question, as will be shown. For simplicity, this analysis will be restricted to data with

error along the y-axis only or along the x-axis only, but not both.

The physical model is presented in Sec. II, including a derivation of the standard least-

squares-fit slope from the model. Section III will explore the clustered data example men-

tioned above. Additionally, Sec. III C gives a straightforward way of thinking about and

remembering the coefficient of correlation, R2. Finally, Sec. IV shows that the model can

be applied to weighted fits as well.

II. A PHYSICAL MODEL FOR LINE FITTING

First, the physical model will be described, and then it will be used to derive the well-

known least-squares-fit formula1 for the slope B of a line,

B =
N
∑

i xiyi −
∑

i xi
∑

i yi
N
∑

i x
2
i − (

∑
i xi)

2
, (1)

for a set of N data points of the form (xi, yi). Note that each of these sums is from i = 1 to

N . This abbreviated notation will be used throughout for simplicity, except in cases where
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the full notation is needed for clarity.

In this physical model, each of these data points is treated as if it is a bead of mass m

on a horizontal, massless rod resting on a fulcrum. Each point’s x-value gives the bead’s

horizontal location on the rod. A point’s mass times its y-value represents a vertical force

the bead exerts on the rod. For an unweighted fit, the masses of all the beads are equal and

can be assigned a value of 1, which means that, in effect, y-value alone can be treated as the

force. This simplification is used throughout the rest of this section and the next. Weighted

fits will be addressed in Sec. IV.

The fulcrum of the rod is located at the x-coordinate of the center of mass of the beads,

which is equal to the average of the x-values in an unweighted fit. Positive y-values are

chosen to be forces acting vertically upward on the rod, and negative y-values to be forces

acting vertically downward. An example of assigning data values to the model is shown in

Fig. 1, where two data points of a fictitious data set are displayed. It will be shown that the

slope of the best fit line for this data is given by the angular acceleration α of the rod due

to the beads.
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FIG. 1: A physical model for line fitting, in which data points are thought of as beads of mass

m applying forces to a massless rod. The fulcrum of the rod is placed at the x-coordinate of

the “center of mass” of the data points. The x-coordinates of the data points indicate the

position of the beads, and the y-coordinates represent forces.

The first step to proving this is to calculate the net torque that the beads exert on the

rod. As stated above, the fulcrum of the rod is located at the x-coordinate of the center of

mass, denoted xcm. In the case of unweighted data (equally weighted beads of mass m = 1),

this is also the average of the x-values of the data, xcm = x̄ = 1
N

∑
i xi. Recall the usual

torque formula τ = rF⊥, where F⊥ is the force perpendicular to the rod applied at a distance
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r from the fulcrum. In this model, F⊥ corresponds to a given data point’s y-value, and the

distance r becomes (xi − x̄). As a result, the net torque exerted on the rod by the beads is

τ =
∑
i

(xi − x̄)yi . (2)

Expanding this expression, substituting in the expression for x̄, and simplifying gives

τ =
∑
i

xiyi −
1

N

∑
i

xi
∑
i

yi . (3)

Next, consider the moment of inertia of the beads on the massless rod. The moment of

inertia for a point mass m is I = mr2, where r is the distance from the rotation axis. With

equally weighted beads of mass 1, the rotational inertia for this rod-and-bead system is

I =
∑
i

(xi − x̄)2 . (4)

Again, expanding and substituting in the expression for x̄ gives

I =
∑
i

x2
i −

1

N

(∑
i

xi

)2

. (5)

The angular acceleration can then be expressed as

α =
τ

I
=

∑
i xiyi −

1
N

∑
i xi
∑

i yi∑
i x

2
i − 1

N
(
∑

i xi)
2 . (6)

Multiplying both the numerator and denominator by N reproduces Eq. (1), where the slope

B is equal to the angular acceleration α of the rod due to the beads. Thus, the least-squares-

fit slope formula can be derived from simple physics equations applied to this rod-and-bead

model.

Equation (1) can be further simplified by shifting to a reference frame in which the vertical

axis passes though the center of mass so that xcm = x̄ = 0. (The center-of-mass frame is

an obvious such choice, but the condition ycm = 0 is not necessary to simplify the slope

equation.) In this new reference frame, the slope equation reduces to

B =
τ

I
=

∑
i xiyi∑
i x

2
i

. [xcm = x̄ = 0] (7)

Equation (7) will be used throughout the paper to show the utility of this model.

Note that one only needs to remember this rod-and-bead model to figure out the formula

for the slope of a line. Determining the angular acceleration of a system is a skill physicists
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usually have readily at their disposal and can use intuitively. Up to now, only unweighted

fits have been discussed, but Sec. IV will show that the rod-and-bead model still applies to

weighted fits, with the mass of each bead corresponding to the the assigned weight of the

associated data point.

As a first example of how this physical model can elucidate an aspect of line fitting,

note that data with x-values near the center of mass do not significantly affect the slope.

This rod-and-bead model makes this obvious since these points would correspond to masses

resting near the fulcrum, which of course would not provide much torque or rotational inertia.

This can also be quantitatively confirmed with Eq. (7) by noticing neither the numerator or

denominator are significantly affected by data with x-values near zero. Instructors commonly

advise students revisiting an experiment to try to gather extra data at the extremes rather

than at the center of their graphs. The logic behind this instruction is easily explained by

this physical model.

III. PHYSICAL MODEL APPLIED TO CLUSTERED DATA

A. Data with Vertical Clusters

Now the model can be applied to the question posed in the introduction: How does

averaging or not averaging data clusters affect the fit of the line? Consider data where there

are multiple y-values for each x-value, such as that shown on the graph on the left side of

Fig. 2a. The data is conveniently plotted in a reference frame with xcm = 0. In a full data fit

approach, let each x-value be represented by one bead. If there is a cluster of n data points

at a given x-value, the corresponding bead on the rod will have a mass of n units. In the

example of Fig. 2a, the beads each have three unit masses. The force each bead exerts on the

massless rod is equal to the sum of the y-values of the points in the associated cluster. The

slope of this line would be given by Eq. (7): B = τ
I

= (−1)(−4.5)+(0)(.03)+(1)(4.47)
3(−1)2+3(0)2+3(1)2

= 8.97
6

= 1.495.
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FIG. 2: (a) Sample data with vertical clusters of data, graphed (left) and modeled (right).

Note that, in the model, the y-value “forces” are summed for points with the same x-value.

(b) Same data with clusters averaged, graphed and modeled.

Alternatively, the standard approach calls for averaging the y-values of each data cluster

and fitting a line to those average values. Figure 2b shows the averaged data values and

the corresponding physical model. Notice that the beads now have unit mass. Both the

torque and the rotational inertia decrease proportionally so the result is exactly the same,

B = τ
I

= (−1)(−1.5)+(0)(.03)+(1)(1.49)
(−1)2+(0)2+(1)2

= 2.99
2

= 1.495. This calculation was done explicitly to

demonstrate an application of the model.

As to the question of whether it matters whether a full data fit or a standard fit is used,

it does not for this case. However, that conclusion would be different if the number of

data points in each cluster were not the same. The slope for the full data fit will be more

influenced by the larger clusters, and agreement between the standard and full data fit is

not guaranteed.

This can also be shown mathematically, without the usage of the model, by directly

manipulating Eq. (7), which is implicitly a full data fit when applied directly. Suppose

there are N clusters, which means that there are N values for the independent variable

x, labeled {x1, x2, . . . , xN}. For each value of x, there are n measurements of the y value,
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{y11, y12, . . . , y1n, y21, . . . , y2n, . . . , yNn}. Using this notation, Eq. (7) becomes

B =

∑N
i=1

∑n
j=1 xiyij∑N

i=1

∑n
j=1 x

2
i

=

∑N
i=1 xi

∑n
j=1 yij∑N

i=1 nx
2
i

=

∑N
i=1 xinȳi∑N
i=1 nx

2
i

=

∑N
i=1 xiȳi∑N
i=1 x

2
i

, (8)

where ȳi is the average of the y values in the i-th group. Notice that the original expression

for the slope [Eq. (7)] is recovered except with the average y-values instead of actual y-values,

which is how the standard-fit slope is calculated. So as long as each cluster of points has

the same number of members, it doesn’t matter whether a standard or full fit is done; the

result is the same. Otherwise, the results of the standard and full data fits will not match

exactly.

B. Data with Horizontal Clusters

1. Discussion

For data with horizontal clusters, in contrast to data with vertical clusters, full data

and standard fits generally do not agree, even when the number of data points in each

cluster is the same. In fact, for data with horizontal clusters, the standard fit will yield a

steeper slope than a full data fit. This is easy to see using this model, but first, consider

a simple example. Imagine data points (−5,−1), (−4,−1), (−3,−1), (3, 1), (4, 1), (5, 1).

Figure 3 dispenses with the graph of the hypothetical data and goes straight to the model

to compute the respective slopes.
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FIG. 3: (a) Modeled version of sample data with horizontal data clusters. (b) Same data

with clusters averaged before modeling.

In Fig. 3a, the data points are represented as six beads with force (y-values) of magnitude

1 on each bead; the forces on the left are negative while those on the right are positive. A

full data fit gives B = (−5)(−1)+(−4)(−1)+(−3)(−1)+(3)(1)+(4)(1)+(5)(1)
(−5)2+(−4)2+(−3)2+(3)2+(4)2+(5)2

= 24
100

. In the standard

approach, the fit uses the average of the data clusters, as shown in Fig. 3b. In this case, the

average x-position on the right cluster will be x = 4 and the one on the left will be x = −4.

The average force (y-value) is −1 and +1, on the left and right bead, respectively. For this

fit, the slope is B = (−1)(−4)+(1)(4)
(−4)2+(4)2

= 8
32

, which is slightly steeper than the full-data-fit slope.

This difference in slope can be explained with the physical model, where one can see

that both the torque (numerator) and rotational inertia (denominator) for the full data fit

are larger than that of the standard fit. In the example, the torque for the full data fit is

larger by a multiplicative factor of three due to the contributions of the three values from

each cluster. The moment of inertia of the full data fit, however, is larger by slightly more

than a factor of three. To understand this, consider that, in the case of the full data fit, the

denominator of the slope is the moment of inertia of all the data points (IFull). When the

data points in each cluster are averaged for the standard fit, some information is lost. In this

8



case, the lost information contains the contribution due to the internal moment of inertia of

each cluster (Iint,i) about its center of mass. Each cluster in the standard fit contributes only

one term for the moment of inertia, namely the cluster’s center of mass about the fulcrum

(Icm,i). In contrast, the full data fit includes two terms (Icm,i+Iint,i) from each cluster. Thus,

the standard fit’s effective moment of inertia (Ieff) is not proportional to the full moment of

inertia because of the excluded internal terms. As a result, the numerator and denominator

of the standard fit are not changed by the same multiplicative factor, and the result is a

steeper slope in the standard-fit case. This will be shown analytically below.

Because the internal moments of inertia of the clusters are the source of the discrepancy

between the two methods of calculating the slope, the two methods should approximately

agree when those internal terms are small. This will occur when the clusters are sufficiently

compact, which makes sense intuitively. More detail on these findings appears in the follow-

ing subsubsection to help substantiate this simple model, but hopefully, it will not distract

the reader away from this intentionally intuitive physical model for thinking about line fits.

2. Analytic Comparison

To see the slope discrepancy mathematically, again let N be the number of clus-

ters. In the case of horizontal clusters, there will be N values of y, denoted

{y1, y2, . . . , yN}. For each value of y, let there be n measurements of the x value, giving

{x11, x12, . . . , x1n, x21, . . . , x2n, . . . , xNn}. Using this notation, Eq. (7) for the full data fit

becomes

BFull =

∑N
i=1

∑n
j=1 xijyi∑N

i=1

∑n
j=1 x

2
ij

=
τFull

IFull

. (9)

Note that the labeling of the numerator and denominator as τFull and IFull, respectively,

follows directly from Eqs. (2) and (4) being summed over all the data points (with mass 1)

in a reference frame with xcm = x̄ = 0.

The full-fit moment of inertia IFull can be calculated via a different but more complicated

method than using Eq. (4). Doing this will illustrate the different contributions to the

moment of inertia and how that relates to the differences between the standard and full

fit techniques. This alternate method consists of first finding the moment of inertia of

each cluster about its own center of mass, then using the parallel-axis theorem to find the

corresponding moment of inertia about the model’s fulcrum (at xcm = x̄ = 0), and finally
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summing over all the clusters, as follows.

First, the internal moment of inertia of the i-th cluster about its center of mass is

Iint,i =
n∑
j=1

(xij − x̄i)2 , (10)

where x̄i is the average of the x-values in the i-th cluster and all points are assumed to have

a mass of 1, similar to Eq. (4). This expression can be expanded and simplified to give

Iint,i =
n∑
j=1

x2
ij −

1

n

(
n∑
j=1

xij

)2

=
1

2n

n∑
a=1

n∑
b=1

(xia − xib)2 , (11)

where the final equality is given by the useful (and general) relationship

1

2

n∑
a=1

n∑
b=1

(xa − xb)2 = n
n∑
j=1

x2
j −

(
n∑
j=1

xj

)2

. (12)

Note that the 2n in the denominator of Eq. (11) is a little deceptive since it seems to indicate

that Iint,i gets smaller as n increases. However, that is not the case. The factor of 2 corrects

for double counting, while the factor of n compensates for the fact the rotational inertia

comes from the x-value distances from their cluster averages, rather than their distances

from each other, which the argument of the sum contains.

The next step is to find this cluster’s moment of inertia about the fulcrum. The parallel-

axis theorem indicates that a term of the form md2, where m is the mass of the cluster and d

is the distance (x̄i) from the cluster’s center of mass to the fulcrum, must be added to Iint,i.

The mass of the cluster is n because each point has mass 1 and the cluster has n members.

So this added term is Icm,i = nx̄2
i .

Summing over all the clusters gives the full moment of inertia,

IFull =
N∑
i=1

(Icm,i + Iint,i) =
N∑
i=1

(
nx̄2

i +
n∑
j=1

(xij − x̄i)2

)
. (13)

Expanding and simplifying this expression will reproduce the much simpler form IFull =∑N
i=1

∑n
j=1 x

2
ij that appears in Eq. (9).

To see how this relates to the slope difference between the two line-fitting methods,

consider the standard-fit slope, found by plugging the average x-values into Eq. (7) to get

BStd =

∑N
i=1 x̄iyi∑N
i=1 x̄

2
i

. (14)

10



It is straightforward to show that the numerator, or τStd, is proportional to τFull,

τStd =
N∑
i=1

x̄iyi =
N∑
i=1

(
1

n

n∑
j=1

xij

)
yi =

τFull

n
. (15)

However, the denominator of BStd, denoted Ieff , is not simply IFull/n because the contribution

of the internal moments of inertia of the clusters is no longer included,

Ieff =
N∑
i=1

x̄2
i =

N∑
i=1

1

n
Icm,i =

1

n

(
IFull −

N∑
i=1

Iint,i

)
. (16)

Thus,

BStd =
τStd

Ieff

=
τFull

IFull −
∑

i Iint,i

. (17)

For completeness, the standard-fit slope can be expressed in terms of the original data points

only,

BStd =

∑N
i=1

∑n
j=1 xijyi∑N

i=1

(∑n
j=1 x

2
ij − 1

2n

∑n
a=1

∑n
b=1(xia − xib)2

) , (18)

by using the definitions of the various terms plus Eq. (12). By comparing Eq. (9) for BFull

and Eq. (17) or (18) for BStd, it is clear that the slope’s denominator in the standard fit

is always smaller than that for the full data fit (in the case of horizontal clusters of equal

size) because of an extra subtractive term, and hence the standard fit will always produce a

steeper slope than the full fit in these circumstances.

As mentioned at the end of Sec. III B 1, the standard and full fits will agree reasonably well

when the clusters are sufficiently compact, meaning that the typical width of the clusters is

significantly less than the width of the entire data set. In that case, the differences |xij − x̄i|

are generally small compared to |xij| for most clusters. Some terms near the fulcrum may

have |xij− x̄i| >∼ |xij|, but the magnitude of those terms will be quite small (because of their

proximity to the fulcrum) compared to the typical size of the terms from the other clusters.

So even if |xij − x̄i| � |xij| is not true for all terms, the relationship
∑

i Iint,i �
∑

i Icm,i will

hold as long as it’s true for most. As a result, the
∑

i Iint,i contribution should be negligible,

giving Ieff ≈ IFull and BStd ≈ BFull.

C. R2 Interpretation

A natural question to ask is, “What happens when the two axes are reversed? Is the new

slope the inverse of the old one? That is, does Bxy×Byx = 1?” The answer is usually “no.”
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Applying Eq. (7) as an expression for Bxy and for Byx gives

Bxy ×Byx =

∑
i xiyi∑
i x

2
i

×
∑

i yixi∑
i y

2
i

=
(
∑

i xiyi)
2∑

i x
2
i

∑
i y

2
i

. (19)

This is actually the coefficient of correlation, R2, in the center-of-mass frame. (Note: In this

case, the center-of-mass frame is necessary because the x- and y-axes are being swapped

in the slope formula. Therefore, a reference frame in which both xcm = 0 and ycm = 0 is

needed.) For comparison, the standard expression for the coefficient of correlation1 is

R2 =
[
∑

i(xi − x̄)(yi − ȳ)]2∑
i(xi − x̄)2

∑
i(yi − ȳ)2

, (20)

where x̄ and ȳ represent the average values of {xi} and {yi}, respectively. In the center-of-

mass frame, x̄ and ȳ are both zero (x̄ = xcm = 0 and ȳ = ycm = 0 for unweighted data),

reducing this expression to the final term in Eq. (19). Thus, the coefficient of correlation

naturally falls out from this model. If the data are perfectly linearly correlated, R2 = 1, and

consequently Bxy ×Byx = 1 in that special case.

IV. PHYSICAL MODEL APPLIED TO WEIGHTED FITS

The slope of a weighted fit1 is given by

B =

∑
iwi

∑
iwixiyi −

∑
iwixi

∑
iwiyi∑

iwi
∑

iwix
2
i − (

∑
iwixi)

2
, (21)

where wi are the weights assigned to the data points. This expression can be derived from

the rod-and-bead model using the same method as in Sec. II but with a few modifications.

Before, it was assumed that all data points had the same weight and were assigned unit

mass. Now, the weight wi of each point becomes the mass of the corresponding bead in the

model, and the force the bead exerts on the rod is now wiyi instead of just yi. Also, the

average of the x-values is no longer equal to the center of mass, so the x̄ terms appearing in

the equations of Sec. II revert to xcm.

In this case, the torque exerted on the rod by the beads is

τ =
∑
i

(xi − xcm)(wiyi) =
∑
i

wixiyi −
1

M

∑
i

wixi
∑
i

wiyi , (22)

where M =
∑

iwi is the total mass of the beads and xcm = 1
M

∑
iwixi. The moment of

inertia is similarly

I =
∑
i

wi(xi − xcm)2 =
∑
i

wix
2
i −

1

M

(∑
i

wixi

)2

. (23)
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Using these two expressions to calculate the angular acceleration α = τ/I and multiplying

both numerator and denominator by M reproduces Eq. (21). As in the unweighted case, the

data can be moved to a frame with xcm = 0 for simplicity, and the slope equation reduces

to

B =

∑
iwixiyi∑
iwix

2
i

. [xcm = 0] (24)

When weights do not vary too much, as in typical undergraduate experiments, the slope

will not be too different from unweighted fits. In the scheme of this model, the torque and

rotational inertia both increase or decrease almost proportionally and the angular acceler-

ation (i.e., slope) isn’t impacted much. In general, much of the previous discussion about

unweighted fits should apply to weighted fits as well.

V. CONCLUSION

It has been shown that line fitting can be thought of in a physical framework to help

facilitate discussion between scientists. This physical rod-and-bead model allowed questions

regarding clustered data to be readily addressed. While this manuscript contained more

math than preferred in light of the goal, it was included to convince the reader of the fidelity

of the model and its application. Once comfortable with the implementation of the model,

the reader will hopefully be able to intuit conclusions more efficiently than trying multiple

fits on a computer or staring at the summations in Eqs. (1) and (21). The coefficient of

correlation R2 emerged naturally from the model, and as such, is a natural quantity to

consider using. Finally, it was demonstrated that the model can also be applied to weighted

data, where the beads in the model take on a more literal meaning of the term “weight.”

1 John R. Taylor, An Introduction to Error Analysis, 2nd edition (University Science Books,

Sausalito, 1997).
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